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Levinson’s Theorem for the Schrödinger Equation
in One Dimension
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Levinson’s theorem for the one-dimensional Schrödinger equation with a
symmetric potential which decays at infinity faster than x22 is established by the
Sturm–Liouville theorem. The critical case where the Schrödinger equation has
a finite zero-energy solution is also analyzed. It is demonstrated that the number
of bound states with even (odd) parity n+(n2) is related to the phase shift h+(0)
[h2(0)] of the scattering states with the same parity at zero momentum as h+(0)
1 p/2 5 n+p and h2(0) 5 n2p for the noncritical case, and h+(0) 5 n+p and
h2(0) 2 p/2 5 n2p for the critical case.

1. INTRODUCTION

The Levinson theorem (Levinson, 1949) is an important theorem in
nonrelativistic quantum scattering theory that establishes a relation between
the total number nl of bound states with angular momentum l and the phase
shift dl(0) of the scattering state at zero momentum for the Schrödinger
equation with a spherically symmetric potential V(r) in three dimensions:

dl(0) 2 dl(`)

5 H(nl 1 1/2)p when l 5 0 and a half-bound state occurs
nlp the remaining cases

(1)

where the potential V(r) satisfies the following asymptotic conditions:

r 2.V(r). → 0 at r → 0 (2)

r 3.V(r). → 0 at r → ` (3)
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These two conditions are necessary for the nice behavior of the wave function
at the origin and the analytic property of the Jost function, respectively. The
first line in Eq. (1) was first expressed by Newton (Newton, 1960, 1977a,
b, 1982) for the case where a half-bound state of the S wave occurs. The
zero-energy solution to the Schrödinger equation is called a half-bound state
provided that its wave function is finite, but does not decay fast enough at
infinity to be square-integrable.

During the past half century, the Levinson theorem has been proved by
several authors with different methods and generalized to different fields
(Levinson, 1949; Newton, 1960, 1977a, b, 1982, 1994; Jauch, 1957; Martin,
1958; Ni, 1979; Ma and Ni, 1985; Ma, 1985a, b, 1996; Iwinski et al., 1985,
1986; Rosenberg and Spruch, 1996; Liang and Ma, 1986; Poliatzky, 1993;
Blankenbecler et al., 1986; Niemi and Semenoff, 1985; Vidal and LeTourneux,
1992; Kiers and van Dijk, 1996; de Bianchi, 1994; Martin and de Bianchi,
1996; Portnoi and Galbraith, 1997, 1998; Bollé et al., 1986; Gibson, 1987).
Most of this work mainly studied the Levinson theorem in three-dimensional
space. With the recent wide interest in lower dimensional field theories, the
two-dimensional Levinson theorem has been studied numerically (Portnoi
and Galbraith, 1997) as well as theoretically (Portnoi and Galbraith, 1998;
Bollé et al., 1986; Gibson, 1987; Lin, 1997, 1998; Dong et al., 1998a–c).
With respect to the two-dimensional Schrödinger equation, the Levinson
theorem can be given as

hm(0) 5 H(nm 1 1)p when m 5 1 and a half-bound state occurs
nmp the remaining cases

(4)

where hm(0) is the limit of the phase shifts at zero momentum for the mth
partial wave, and nm is the total number of bound states with the given angular
momentum m".

Due to the wide interest in lower dimensional field theory, it may be
worth also studying the Levinson theorem in one dimension for completeness.
In fact, it is common knowledge that one-dimensional quantum scattering
describes many actual physical phenomena to a good approximation. For
instance, the problem of tunneling times has been discussed in Hauge and
Støvneng (1989). Furthermore, one-dimensional models are often applied to
make the more complex higher dimensional systems tractable. Consequently,
it seems reasonable to study the one-dimensional Levinson theorem. This
will be beneficial for understanding both the two-dimensional Levinson theo-
rem and the three-dimensional theorem. Actually, it seems that the direct or
implicit study of the one-dimensional Levinson theorem (de Bianchi, 1994;
Jackiw and Woo, 1975; Newton, 1980, 1983, 1984; Baton, 1985; Kiers and
van Dijk, 1996; Aktosun et al., 1993, 1996, 1998a, b; Nogami and Ross,
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1996; Eberly, 1965) has attracted much more attention than that of the two-
dimensional theorem. We approach this problem by the Sturm–Liouville
theorem (Yang, 1982)

Generally speaking, there are several methods for studying the one-
dimensional Levinson theorem for a nonrelativistic particle. One is based on
the partial-wave analysis method (Nogami and Ross, 1996; Eberly, 1965).
A second relies on the parity-eigenstate representation method (de Bianchi,
1994; van Dijk and Thiers, 1992). A third is to establish the Levinson
theorem by the Jost function and the S-matrix method (Baton, 1985), which
is essentially based on the orthogonality and completeness relation for the
eigenfunctions of the total Hamiltonian, as was first noticed by Jauch (1957).

The purpose of this paper is to demonstrate the one-dimensional Levin-
son theorem for the Schrödinger equation by the Sturm–Liouville theorem.
We arrive at the final result

h+(0) 1 p/2 5 n+p, h2(0) 5 n2p for the noncritical case
(5)

h+(0) 5 n+p, h2(0) 2 p/2 5 n2p for the critical case

where n+ and n2 denote the number of bound states with even parity and
odd parity, and h+(0) and h2(0) denote the phase shifts of the scattering
states with the same parity at zero momentum, respectively. This conclusion
coincides with that in de Bianchi (1994).

One can readily find from Eqs. (5) that the Levinson theorem for the
odd-parity case in one dimension is the same as that for the case l 5 0 in
three dimensions. However, the even-parity case has no counterpart compared
to the three-dimensional Levinson theorem. This is a very interesting feature.

This paper is organized as follows. For simplicity, we first discuss the
cutoff potential case, where the potential is vanishing beyond a sufficiently
large distance x0, and leave to Section 5 the discussion for the general case
where the potential has a tail at infinity. In Section 2 the logarithmic derivative
of the wave function of the Schrödinger equation is chosen as the phase
angle (Yang, 1982), which is proved to be monotonic with respect to the
energy (the Sturm–Liouville theorem). In Section 3, according to this mono-
tonic property, the number of bound states is shown to be related to the
logarithmic derivative of zero energy at x0 when the potential changes from
zero to the given value. It will be further shown in Section 4 that the
logarithmic derivative of zero energy at x0 also determines the limit of the
phase shifts at zero momentum, which leads to the establishment of the one-
dimensional Levinson theorem. The critical case, where a zero-energy solution
occurs, is also analyzed there.
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2. NOTATIONS AND THE STURM–LIOUVILLE THEOREM

Throughout this paper the natural units " 5 1 and 2m 5 1 are employed.
Let us consider the one-dimensional Schrödinger equation with a symmetric
potential V(x),

d 2c(x)
dx2 1 [E 2 V(x)]c(x) 5 0, V(2x) 5 V(x)

where E denotes the energy of the particle. For simplicity, we first discuss
the case with a cutoff potential:

V(x) 5 0 when x $ x0 (6)

where x0 is a sufficiently large distance. Introduce a parameter l for the
potential V(x):

V(x, l) 5 lV(x) (7)

where the potential V(x, l) changes from zero to the given potential V(x) as
l increases from zero to one. After introducing the parameter l, the one-
dimensional Schrödinger equation can be modified as

2

x2 c(x, l) 1 [E 2 V(x, l)]c(x, l) 5 0 (8)

Since the potential is symmetric, the energy eigenfunctions can be com-
bined into those with a definite parity, which satisfy the following boundary
conditions at the origin:

c(o)(x, l).x50 5 0 for the odd-parity case
(9)

c(e)(x, l)
x Z

x50

5 0 for the even-parity case

Therefore, in the course of studying the one-dimensional Levinson theorem
we only need to discuss the wavefunction in the range 0 # x , ` with the
given parities, in the even-parity and odd-parity cases, respectively.

Now, we are going to solve Eq. (8) in two ranges [0, x0] and [x0, `),
and match two solutions at x0. Ignoring the effect of the normalization factor,
which is irrelevant to our discussion, we only need one matching condition
at x0, which is the condition for the logarithmic derivative of the wave function
(Yang, 1982):

A(E, l) [ H 1
c(x, l)

c(x, l)
x J

x5x02

5 H 1
c(x, l)

c(x, l)
x J

x5x01

(10)

According to the condition (9), there exists only one solution near the
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origin. For example, for the free particle (l 5 0), the solution to Eq. (8) at
the range [0, x0] is real:

c(e)(x, 0) 5 Hcos(kx) when E 5 k2 . 0
cosh(kx), when E 5 2k2 # 0

(11)

for the even-parity case, and

c(o)(x, 0) 5 H sin(kx) when E 5 k2 . 0
sinh(kx), when E 5 2k2 # 0

(12)

for the odd-parity case.
In the range (x0, `), we have V(x) 5 0. For E . 0, there exist two

oscillatory solutions to Eq. (8) whose combination can always satisfy the
matching condition (10), so that there is a continuous spectrum for E . 0.
Assuming that the phase shifts h6(k, l) are zero for the free particles (l 5
0), we have

c(x, l) 5 Hcos(kx 1 h+(k, l)), for the even-parity case
sin(kx 1 h2(k, l)), for the odd-parity case

(13)

h6(k, 0) 5 0, when k . 0 (14)

We would like to make some remarks here. First, at the first sight, the
wavefunction in Eq. (13) seems not to have a definite parity. As a matter of
fact, the solutions (13) are only suitable in the region (x0, `). The correspond-
ing solutions in the region (2`, 2x0] can be calculated according to the
parity of the solution. For example, in the odd-parity case, the solution in
the region (2`, 2x0) is

2sin(k.x. 1 h2(k, l)) 5 sin(kx 2 h2(k, l))

Second, the solution (13) for the even-parity case can be rewritten as

sin(kx 1 h+(k, l) 1 p/2) (15)

h+(k, l) 1 p/2 plays the same role in the even-parity case as h2(k, l) in
the odd-parity case. Therefore, we only need to establish the Levinson theorem
for the odd-parity case, and the Levinson theorem for the even-parity case
can be obtained by replacing h2(k, l) with h+(k, l) 1 p/2.

Finally, in the region [x0, `), the potential V(x, l) is vanishing and does
not depend on l. However, the phase shifts h6(k, l) depend on l through
the matching condition (10):
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tanh2(k, l) 5 2tan(kx0)
A(E, l) 2 k cot (kx0)
A(E, l) 1 k tan (kx0)

(16)

for the odd-parity case, and a similar formula for the even-parity case can
be obtained by replacing h2(k, l) with h+(k, l) 1 p/2.

The phase shifts h2(k, l) are determined from Eq. (16) up to a multiple
of p due to the period of the tangent function. In our convention (14), the
phase shift h2(k, l), k . 0, changes continuously as l increases from zero
to one. In other words, the phase shift h2(k, l) is determined completely in
our convention, and so is h+(k, l). For simplicity we define

h6(k) [ h6(k, 1) (17)

Since there is only one finite solution at infinity for E # 0, both for the
even-parity case and for the odd-parity case,

c(x, l) 5 exp (2kx) when x0 # x , ` (18)

The solution satisfying the matching condition (10) will not always exist for
E # 0. Except for E 5 0, if and only if there exists a solution of energy E
satisfying the matching condition (10) does a bound state appear at this
energy. Therefore, there is a discrete spectrum for E # 0. The finite solution
for E 5 0 is a constant one. It does not decay fast enough to be square-
integrable such that it is not a bound state if the matching condition (10)
is satisfied.

We now turn to the Sturm–Liouville theorem. Denote by c(x, l) the
solution to Eq. (8) corresponding to the energy E,

2

x2 c(x, l) 1 [E 2 V(x, l)]c(x, l) 5 0 (19)

Multiplying Eq. (8) and Eq. (19) by c(x, l) and c(x, l), respectively, and
calculating their difference, we obtain



x Hc(x, l)
c(x, l)

x
2 c(x, l)

c(x, l)
x J

5 2(E 2 E )c(x, l)c(x, l) (20)

According to the boundary condition (9), the derivatives of the wavefunction
for the even-parity case and the wavefunction for the odd-parity case vanish
at the origin, respectively. Therefore, integrating (20) in the range 0 # x #
x0, we obtain
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1
E 2 E Hc(x, l)

c(x, l)
x

2 c(x)
c(x, l)

x J
x5x02

5 2#
x0

0

c(x, l)c(x, l) dx

Taking the limit, we arrive at

A(E, l)
E

5


E 1 1
c(x, l)

c(x, l)
x 2

x5x02

5 2c(x0, l)22 #
x0

0

c(x, l)2 dx # 0

(21)

Similarly, from the boundary conditions that when E , 0 the function c(x,
l) tends to zero at infinity, and when E 5 0 the derivative of the function
is equal to to zero at infinity, we have



E 1 1
c(x, l)

c(x, l)
x 2

x5x01

5 c(x0, l)22 #
`

x0

c(x, l)2 dx . 0 (22)

Therefore, when E # 0, it is evident that both sides of Eq. (10) are monotonic
with respect to the energy E: as the energy increases, the logarithmic derivative
of the wave function at x02 decreases monotonically, but that at x01 increases
monotonically. This is the essence of the Sturm–Liouville theorem.

3. THE NUMBER OF BOUND STATES

In this section we will establish the relation between the number of
bound states and the logarithmic derivative A(0, l) of the wavefunction at
x 5 x02 for zero energy when the potential changes, in terms of the monotonic
property of the logarithmic derivative of the wave function with respect to
the energy E.

For E # 0, we obtain the logarithmic derivative at x 5 x01 from Eq. (18):

1 1
c(x, l)

c(x, l)
x 2

x5x01

5 H0 when E , 0
2k , 2` when E → 2`

(23)

On the other hand, when l 5 0, the logarithmic derivative at x 5 x02 can
be calculated from Eqs. (11) and (12) for E # 0:

A(E, 0) 5 1 1
c(x, 0)

c(x, 0)
x 2

x5x02

5 k tanh(kx0)

5 H0 when E , 0
k , ` when E → 2`

(24)

for the even-parity case, and
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A(E, 0) 5 1 1
c(x, 0)

c(x, 0)
x 2

x5x02

5 k coth(kx0)

5 H x21
0 when E , 0

k , ` when E → 2`
(25)

for the odd-parity case.
It is evident from Eqs. (23) and (25) that there is no overlap between

two variant ranges of two logarithmic derivatives for the odd-parity case,
namely there is no bound state for the free particle in the odd-parity case.
However, there is one point overlap from Eqs. (23) and (24). It means that
there is a finite solution at E 5 0 when l 5 0 for the even-parity case. It is
nothing but a constant solution. This solution is finite, but does not decay
fast enough at infinity to be square-integrable. It is not a bound state, and
is called a half-bound state. We will discuss the cases with a half-bound
state later.

Now, both for the even-parity case and for the odd-parity case, if A(0,
l) decreases across the value zero as l increases, an overlap between the
variant ranges of two logarithmic derivatives of two sides of x 5 x0 appears.
Since the logarithmic derivative of the wavefunction at x02 decreases mono-
tonically as the energy increases and that at x01 increases monotonically,
the overlap means that there must exist one and only one energy for which
the matching condition (10) is satisfied, that is, a bound state appears. From
the viewpoint of node theory, when A(0, l) decreases across the value zero,
a node for the zero-energy solution to the Schrödinger equation comes inward
from the infinity, namely, a scattering state changes to a bound state.

As l increases again, A(0, l) can decrease to 2`, jump to `, and then
decrease again across the value zero, so that another overlap occurs and
another bound state appears. Note that when the zero point in the zero-energy
solution c(x, l) comes to x 5 x0, A(0, l) goes to infinity. It is not a singularity.

Each time A(0, l) decreases across the value zero, a new overlap between
the variant ranges of two logarithmic derivatives appears such that a scattering
state changes to a bound state. At the same time, a new node comes inward
from infinity in the zero-energy solution to the Schrödinger equation. Con-
versely, each time A(0, l) increases across the value zero, an overlap between
those two variant ranges disappears so that a bound state changes back to a
scattering state, and simultaneously, a node goes outward and disappears in
the zero-energy solution. The number of bound states n6 is equal to the times
that A(0, l) decreases across the value zero as l increases from zero to one,
subtracted by the times that A(0, l) increases across the value zero. It is also
equal to the number of nodes in the zero-energy solution. In the next section
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we will show that this number is nothing but the phase shift at zero momentum
divided by p, i.e., h2(0)/p or h+(0)/p 1 1/2.

We should pay some attention to the critical case where A(0, 1) 5 0.
A finite zero-energy solution c(x, 1) 5 c at [x0, `) will satisfy the matching
condition (10) with the zero A(0, 1). Note that when A(0, 1) 5 0, the
wavefunction at x02, c(x0, 1), must be nonvanishing for the nontrivial solu-
tion. The constant c is nothing but the nonvanishing value c(x0, 1). The
constant solution is not square-integrable so that it is not a bound state, and
is called a half-bound state. As l increases from a number near and smaller
than one and finally to reach one, if A(0, l) decreases and finally reaches
the value zero, a scattering state becomes a half-bound state, and no new
bound state appears. Conversely, as l increases to reach one, if A(0, l)
increases and finally reaches the value zero, a bound state becomes a half-
bound state, namely, a bound state disappears. This conclusion holds for both
the even-parity case and the odd-parity case.

4. LEVINSON’S THEOREM

When l 5 0, the phase shifts h6(k, 0) are defined to be zero. As l
increases from zero to one, h6(k, 0) for k . 0 changes continuously.

For the odd-parity case, the phase shift h2(k, l) is calculated by Eq.
(16). It is easy to see that the phase shift h6(k, l) increases monotonically
as the logarithmic derivative A(E, l) decreases:

h2(k, l)
A(E, l) Z

k

5
2k cos2 h2(k, l)

{A cos(kx) 1 k sin(kx)}2 # 0 (26)

The phase shift h2(0, l) is the limit of the phase shift h2(k, l) as k
tends to zero. Therefore, we are only interested in the phase shift h2(k, l)
at a sufficiently small momentum k, k ¿ 1/x0. For the small momentum we
obtain from Eq. (16)

tan h2(k, l) , 2(kx0)
A(0, l) 2 c2k2 2 x21

0 1 k2 x0/3

A(0, l) 2 c2k2 1 k2x0
(27)

where the expansion of A(E, l) for small k is used,

A(E, l) , A(0, l) 2 c2k2, c2 $ 0 (28)

which is calculated from the Sturm–Liouville theorem (21). In both the
numerator and the denominator of Eq. (27) we included the next leading
term, which is only useful for the critical cases where the leading terms
cancel each other.

First, it can be seen from Eq. (27) that, except for the special point
where A(0, l) 5 0, tan h2(k, l) tends to zero as k goes to zero, namely,
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h2(0, l) is always equal to the multiple of p except for A(0, l) 5 0. In
other words, if the phase shift h2(k, l) for a sufficiently small k is expressed
as a positive or negative acute angle plus np, its limit h2(0, l) is equal to
np, where n is an integer. This means that h2(0, l) changes discontinuously.
When A(0, l) 5 0, the limit h2(0, l) of the phase shift h2(k, l) is equal to
(n 1 1/2)p. It is not important for our discussion except for A(0, 1) 5 0,
which we call the critical case and will discuss later.

Second, for a sufficiently small k, if A(E, l) decreases as l increases,
h2(k, l) increases monotonically. Assume that in the variant process A(E,
l) may decrease through the value zero, but does not stop at this value. As
A(E, l) decreases, each time tan h2(k, l) for the sufficiently small k changes
sign from positive to negative, h2(0, l) jumps by p. However, each time tan
h2(k, l) changes sign from negative to positive, h2(0, l) remains invariant.
Conversely, if A(E, l) increases as l increases, h2(k, l) decreases monotoni-
cally. As A(E, l) increases, each time tan h2(k, l) changes sign from negative
to positive, h2(0, l) jumps by 2p, and each time tan h2(k, l) changes sign
from positive to negative, h2(0, l) remains invariant.

Third, as l increases from zero to one, V(x, l) changes from zero to
the given potential V(x) continuously. Each time A(0, l) decreases from near
and larger than the value zero to smaller than that value, the denominator in
Eq. (27) changes sign from positive to negative and the remaining factor
remains positive, such that the phase shift at zero momentum h2(0, l) jumps
by p. Conversely, each time A(0, l) increases across the value zero, the
phase shift at zero momentum h2(0, l) jumps by 2p. Each time A(0, l)
decreases from near and larger than the value x21

0 to smaller than that value,
the numerator in Eq. (27) changes sign from positive to negative, but the
remaining factor remains negative, such that the phase shift at zero momentum
h2(0, l) does not jump. Conversely, each time A(0, l) increases across the
value x21

0 , the phase shift at zero momentum h2(0, l) does not jump either.
Therefore, the phase shift h2(0)/p is just equal to the times A(0, l)

decreases across the value zero as l increases from zero to one, subtracted
by the times A(0, l) increases across that value. As discussed in the previous
section, we have proved that the difference of the two times is nothing but
the number of bound states n2, namely, for the noncritical cases, the Levinson
theorem for the one-dimensional Schrödinger equation in the odd-parity
case is

h2(0) 5 n2p (29)

Fourth, we now discuss the critical case where the logarithmic derivative
A(0, 1) (l 5 1) is equal to zero. In the critical case, the constant solution
c(x) 5 c (c Þ 0) in the range [x0, `) for zero energy will match this A(0, 1)
at x0. In the critical case, it is obvious that there exists a half-bound state for
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both the even-parity case and the odd-parity case. A half-bound state is not
a bound state, because its wave function is finite, but not square-integrable.
As l increases from a number near and less than one and finally reaches
one, if the logarithmic derivative A(0, l) decreases and finally reaches, but
not cross, the value zero, according to the discussion in the previous section,
a scattering state becomes a half-bound state when l 5 1. On the other hand,
the denominator in Eq. (27) is proportional to k2 such that tan h2(k, 1) tends
to infinity. Namely, the phase shift h2(0, 1) jumps by p/2. Therefore, for
the critical case the Levinson theorem becomes

h2(0) 2 p/2 5 n2p (30)

Conversely, as l increases and reaches one, if the logarithmic derivative
A(0, l) increases and finally reaches the value zero, a bound state becomes
a half-bound state when l 5 1, and the phase shift h2(0, 1) jumps by
2p/2. In this situation, the Levinson theorem (30) still holds.

Finally, for the even-parity case, the only change is to replace the phase
shift h2(0) with the phase shift h+(0) 1 p/2. Therefore, the Levinson theorem
for the one-dimensional Schrödinger equation in the even-parity case is

h+(0) 1 p/2 5 n+p for the noncritical case
(31)

h+(0) 5 n+p for the critical case

Note that for the free particle in the even-parity case, there is a half-
bound state at E 5 0. It is the critical case where h+(0) 5 0 and n+ 5 0.
Combining Eqs. (29)–(31), we obtain the Levinson theorem for the one-
dimensional Schrödinger equation as Eq. (5).

5. DISCUSSION

Now we discuss the general case where the potential V(x) has a tail at
x $ x0. First, we assume that

V(x) 5 bx22, x $ x0 (32)

It is obvious that when b , 21/4 there is an infinite number of bound states
for the Schrödinger equation (8) such that the Levinson theorem (5) is violated.
When b $ 21/4, let

j( j 1 1) 5 b, j 5 21/2 1 (b 1 1/4)1/2 $ 21/2 (33)

The Schrödinger equation (8) becomes the same as the radial equation in
three dimensions except that the phase shift is h2(k, l) 2 jp/2 now. Repeating
the proof in our previous paper [6], we obtain the modified Levinson theorem
for the Schrödinger equation (8) with the potential (32) in the noncritical case:
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h2(0) 2 jp/2 5 n2p, h+(0) 1 (1 2 j )p/2 5 n+p (34)

In other words, the Levinson theorem (5) is violated. It is obvious that the
Levinson theorem will be violated more seriously if the potential tail decays
at infinity slower than the potential tail (32). On the other hand, if the potential
tail decays at infinity faster than the potential tail (32), for an arbitrarily
given small positive number e, there always exists a larger enough number
x0 such that

(2e)(2e 1 1)x22 , V(x) , e(e 1 1)x22, x $ x0 (35)

Since e is arbitrarily small, no modification is needed to the Levinson theo-
rem (5).

In conclusion, we establish the one-dimensional Levinson theorem (5)
for the Schrödinger equation in one dimension with the potential satisfying

V(2x) 5 V(x), lim
x→`

x2V(x) 5 0 (36)

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation
of China and Grant No. LWTZ-1298 from the Chinese Academy of Sciences.

REFERENCES

Aktosun, T., Klaus, M., and van der Mee, C. (1993). J. Math. Phys. 34, 2651.
Aktosun T., Klaus, M., and van der Mee, C. (1996). J. Math. Phys. 37, 5897.
Aktosun, T., Klaus, M., and van der Mee, C. (1998a). J. Math. Phys. 39, 4249.
Aktosun, T., Klaus, M., and van der Mee, C. (1998b). J. Math. Phys. 39, 1957.
Baton, G. (1985). J. Phys. A 18, 479.
Blankenbecler, R., and Boyanovsky, D. (1986). Physica 18D, 367.
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